1.1. Introduction : a definition of climate --
1.2. Solar radiation and the energy budget of the Earth --
1.3. Atmosphere and climate --
1.3.1. Evolution of the atmosphere --
1.3.2. Temperature structure --
1.3.3. Pressure, composition, and temperature variations and dynamics --
1.4. Ocean and climate --
1.4.1. Heat storage and transport --
1.4.2. Hydrological cycle --
1.4.3. Carbon dioxide exchange with the oceans --
1.4.4. Dynamical coupling between the atmosphere and the ocean --
1.5. Radiative transfer in the atmosphere --
1.6. The greenhouse effect --
1.7. The ozone layer and ozone depletion --
1.8. Climate observations --
1.9. The stability of the climate --
1.9.1. Data on past fluctuations --
1.9.2. Origin of the observed fluctuations --
1.10. Climate modelling --
1.11. Climate on other planets --
2. Solar radiation and the energy budget of the Earth --
2.3. Source of the Sun's energy --
2.4. The radiation laws --
2.5. The solar constant --
2.6. The solar spectrum --
2.7. Solar observations --
2.8. Absorption of solar radiation in the atmosphere --
2.9. The balance between incoming solar and outgoing thermal radiation --
3. Atmosphere and climate --
3.2. Atmospheric composition --
3.3. Units of pressure --
3.4. The variation of pressure with height --
3.5. Vertical temperature structure --
3.5.1. Tropospheric temperature profile --
3.5.2. Stratospheric temperature profile --
3.5.3. Observed temperature profiles --
3.6. The general circulation of the atmosphere --
4. Clouds and aerosols --
4.2. Potential temperature and entropy --
4.3. Potential energy and available potential energy --
4.5. Thermodynamics of moist air --
4.6. Condensation processes and cloud formation --
4.7. Growth of cloud droplets --
4.8. Growth of ice crystals --
4.9. Collision and coalescence --
5.2. Ocean measurements --
5.3. Composition of the ocean : salinity --
5.4. Vertical and latitudinal structure of the ocean --
5.5. The oceanic equation of state --
5.6. The general circulation of the ocean --
5.6.1. The Coriolis Force --
5.6.2. Deep ocean dynamics : the thermohaline circulation --
5.6.3. Near surface dynamics : Ekman transport and Sverdrup balance --
5.7. Ocean circulation and climate change --
6.2. Black body or cavity radiation --
6.3. Atmospheric absorption and emission --
6.4. Atmospheric radiative transfer --
6.5. The radiative transfer equation --
6.6. Integration over wavelength --
6.7. Spectral properties of atmospheric gases --
6.7.2. Vibration-rotation bands --
6.7.3. Band absorption formulations and band models --
6.8. Radiative equilibrium models for the temperature profile --
6.9. Temperature sounding and weighting functions --
6.10. The inverse problem --
7. Earth's energy budget : the 'greenhouse' effect --
7.2. Is the atmosphere a 'greenhouse'? --
7.3. The 'greenhouse' gases --
7.4. Energy balance calculations --
7.5. A simple physical greenhouse model --
7.6. A better greenhouse model --
7.6.1. The radiative-dynamical equilibrium profile revisited --
7.6.2. Surface temperature versus absorber amount --
7.6.3. Effect of changing albedo on surface temperature --
7.7. A simple model with feedback --
8.2. Ultraviolet radiation in the atmosphere --
8.3. Photochemistry of ozone production --
8.4. Variation of ozone concentration with altitude --
8.6. Ozone measurements --
8.7. The Antarctic ozone hole --
8.8. The global distribution of ozone --
9. Climate observations by remote sensing --
9.2. Ground-based measurements --
9.3. Satellite measurements --
9.4. Infrared instruments for remote sounding --
9.4.3. Radiometer optics --
9.4.4. Interference filters --
9.4.5. Thermal infrared detectors --
9.4.6. Photon detectors --
9.4.7. Electronics and telemetry --
9.5. Radiometric performance --
9.5.3. Signal to noise ratio --
9.6. Limb viewing instruments --
9.7. Contemporary satellites and instruments : three examples --
9.7.1. Weather satellites : the Geostationary Operational Environmental Satellite --
9.7.2. Environmental satellites : ENVISAT --
9.7.3. Research satellites : UARS and EOS --
9.8. Applications of remote sensing to climate studies --
9.8.1. Earth's radiation budget --
9.8.2. Atmospheric temperature sounding --
9.8.3. Atmospheric composition and chemistry --
9.8.4. Clouds, aerosols, and polar stratospheric clouds --
9.8.5. Doppler wind measurements --
9.8.6. Surface properties --
9.8.7. Detection of climate change --
10. Climate sensitivity and change --
10.2. Astronomical changes --
10.2.1. The Milankovich cycles --
10.2.3. Current changes --
10.3. Variations in solar output --
10.4. Changes in atmospheric composition --
10.4.1. Greenhouse gases --
10.4.3. Cloud and albedo variations --
10.5. Ocean circulation variations --
10.5.1. Changes in the thermohaline circulation --
10.5.2. Rapid climate change --
10.5.3. Ocean-atmosphere coupling : the El Niño-Southern Oscillation (ENSO) --
10.6. Natural temperature fluctuations --
11. Climate models and predictions --
11.2. Current models and predictions --
11.3. Multiple climate equilibria and sudden climate change --
11.3.1. A simple radiative model --
11.3.2. Box models of the ocean --
11.3.3. Complex models --
11.4. Problems of detection, attribution, and prediction --
12. Climate on other planets --
12.6. The Jovian planet --
12.7. Planets of other stars --
12.8. Planets without stars --